

    
      
          
            
  [image: ReadTheDocs Documentation Status]
 [http://sliplib.readthedocs.org/en/latest/?badge=latest][image: Travis Test Status]
 [https://travis-ci.org/rhjdjong/SlipLib][image: AppVeyor Test Status]
 [https://ci.appveyor.com/project/RuuddeJong/sliplib/branch/master]
sliplib — A module for the SLIP protocol

The sliplib module implements the encoding and decoding
functionality for SLIP packets, as described in RFC 1055 [https://tools.ietf.org/html/rfc1055.html].
It defines encoding, decoding, and validation functions,
as well as a  driver class that can be used to implement
a SLIP protocol stack, and higher-level classes that
apply the SLIP protocol to TCP connections or IO streams.
Read the documentation [http://sliplib.readthedocs.org/en/latest/]
for detailed information.


Background

The SLIP protocol is described in RFC 1055 [https://tools.ietf.org/html/rfc1055.html] (A Nonstandard for
Transmission of IP Datagrams over Serial Lines: SLIP, J. Romkey,
June 1988).  The original purpose of the protocol is
to provide a mechanism to indicate the boundaries of IP packets,
in particular when the IP packets are sent over a connection that
does not provide a framing mechanism, such as serial lines or
dial-up connections.

There is, however, nothing specific to IP in the SLIP protocol.
SLIP offers a generic framing method that can be used for any
type of data that must be transmitted over a (continuous) byte stream.
In fact, the main reason for creating this module
was the need to communicate with a third-party application that
used SLIP over TCP (which is a continuous byte stream)
to frame variable length data structures.




Usage


Low-level usage

The recommended basic usage is to run all encoding and decoding operations
through an instantiation driver of the Driver class, in combination
with the appropriate I/O code.
The Driver class itself works without any I/O, and can therefore be used with
any networking code, or any bytestream like pipes, serial I/O, etc.
It can work in synchronous as well as in asynchronous environments.

The Driver class offers the methods
send and receive to handle
the conversion between messages and SLIP-encoded packets.




High-level usage

The module also provides a SlipWrapper abstract baseclass
that provides the methods send_msg and recv_msg to send
and receive single SLIP-encoded messages. This base class
wraps an instance of the Driver class with a user-provided stream.

Two concrete subclasses of SlipWrapper are provided:


	SlipStream allows the wrapping of a byte IO stream.


	SlipSocket allows the wrapping of a TCP socket.




In addition, the module also provides a SlipRequestHandler
to facilitate the creation of TCP servers that can handle
SLIP-encoded messages.






Error Handling

Contrary to the reference implementation described in RFC 1055 [https://tools.ietf.org/html/rfc1055.html],
which chooses to essentially ignore protocol errors,
the functions and classes in the sliplib module
uses a ProtocolError exception
to indicate protocol errors, i.e. SLIP packets with invalid byte sequences.
The Driver class raises the ProtocolError exception
as soon as a SLIP packet with an invalid byte sequence is received .
The SlipWrapper class and its subclasses catch the ProtocolErrors
raised by the Driver class, and re-raise them when
an attempt is made to read the contents of a SLIP packet with invalid data.




Changelog


v0.6.0


	Added support for unbuffered byte streams in SlipStream (issue #16).


	Deprecated direct access to wrapped bytestream (SlipStream) and socket (SlipSocket)


	Updated documentation and examples







v0.5.0


	Made SlipWrapper and its derived classes iterable (issue #18).







v0.4.0


	Removed sphinx as install dependency (issue #9).
Sphinx is only required for documentation development.


	Changes in automated testing:


	Added testing against Python 3.8.


	Added macOS testing.


	Removed testing against Python 3.4.











v0.3.0


	First general available beta release.





Contents


	Module Contents
	Introduction

	Low level Usage

	High Level Usage

	Exceptions





	Examples
	Echoserver














Indices and tables


	Index


	Module Index


	Search Page










          

      

      

    

  

    
      
          
            
  
Module Contents


Introduction

The sliplib module implements the encoding and decoding
functionality for SLIP packets, as described in RFC 1055 [https://tools.ietf.org/html/rfc1055.html].
It defines encoding, decoding, and validation functions,
as well as various classes that can be used to to wrap
the SLIP protocol over different kinds of byte streams.

The SLIP protocol is described in RFC 1055 [https://tools.ietf.org/html/rfc1055.html] (A Nonstandard for
Transmission of IP Datagrams over Serial Lines: SLIP, J. Romkey,
June 1988).  The original purpose of the protocol is
to provide a mechanism to indicate the boundaries of IP packets,
in particular when the IP packets are sent over a connection that
does not provide a framing mechanism, such as serial lines or
dial-up connections.

There is, however, nothing specific to IP in the SLIP protocol.
The protocol describes a generic framing method that can be used for any
type of data that must be transmitted over a (continuous) byte stream.
In fact, the main reason for creating this module
was the need to communicate with a third-party application that
used SLIP over TCP (which is a continuous byte stream)
to frame variable length data structures.

The SLIP protocol uses four special byte values:








	Byte value

	Name

	Purpose





	0xc0

	END

	to delimit messages



	0xdb

	ESC

	to escape END or ESC bytes in the message



	0xdc

	ESC_END

	the escaped value of the END byte



	0xdd

	ESC_ESC

	the escaped value of the ESC byte






An END byte in the message is encoded as the sequence
ESC+ESC_END (b'\xdb\xdc')
in the slip packet,
and an ESC byte  in the message is encoded
as the sequence ESC+ESC_ESC (b'\xdb\xdd').







	Decoded

	Encoded





	b'\xc0'

	b'\xdb\xdc'



	b'\xdb'

	b'\xdb\xdd'






As a consequence, an ESC byte in an encoded SLIP packet
must always be followed by an ESC_END or an ESC_ESC byte;
anything else is a protocol error.




Low level Usage


Constants


	
END

	




	
ESC

	




	
ESC_END

	




	
ESC_ESC

	These constants represent the special bytes
used by SLIP for delimiting and encoding messages.








Functions

The following are lower-level functions, that should normally not be used directly.


	
encode(msg)

	Encodes a message (a byte sequence) into a SLIP-encoded packet.


	Parameters

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message that must be encoded



	Returns

	The SLIP-encoded message



	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
decode(packet)

	Retrieves the message from the SLIP-encoded packet.


	Parameters

	packet (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The SLIP-encoded message.
Note that this must be exactly one complete packet.
The decode() function does not provide any buffering
for incomplete packages, nor does it provide support
for decoding data with multiple packets.



	Returns

	The decoded message



	Raises

	ProtocolError – if the packet contains an invalid byte sequence.



	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
is_valid(packet)

	Indicates if the packet’s contents conform to the SLIP specification.

A packet is valid if:


	It contains no END bytes other than leading and/or trailing END bytes, and


	Each ESC byte is followed by either an ESC_END or an ESC_ESC byte.





	Parameters

	packet (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The packet to inspect.



	Returns

	True if the packet is valid, False otherwise



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]












Classes


	
class Driver

	Class to handle the SLIP-encoding and decoding of messages

This class manages the handling of encoding and decoding of
messages according to the SLIP protocol.

Class Driver offers the following methods:


	Return type

	None [https://docs.python.org/3/library/constants.html#None]






	
send(message)

	Encodes a message into a SLIP-encoded packet.

The message can be any arbitrary byte sequence.


	Parameters

	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message that must be encoded.



	Returns

	A packet with the SLIP-encoded message.



	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
receive(data)

	Decodes data and gives a list of decoded messages.

Processes data, which must be a bytes-like object,
and returns a (possibly empty) list with bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects,
each containing a decoded message.
Any non-terminated SLIP packets in data
are buffered, and processed with the next call to receive().


	Parameters

	data (Union[bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]]) – A bytes-like object to be processed.

An empty data parameter forces the internal
buffer to be flushed and decoded.

To accommodate iteration over byte sequences, an
integer in the range(0, 256) is also accepted.





	Returns

	A (possibly empty) list of decoded messages.



	Raises

	ProtocolError – When data contains an invalid byte sequence.



	Return type

	List[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]









To enable recovery from a ProtocolError, the
Driver class offers the following attribute and method:


	
messages

	A list of decoded messages.

The read-only attribute messages contains
the messages that were
already decoded before a
ProtocolError was raised.
This enables the handler of the ProtocolError
exception to recover the messages up to the
point where the error occurred.
This attribute is cleared after it has been read.






	
flush()

	Gives a list of decoded messages.

Decodes the packets in the internal buffer.
This enables the continuation of the processing
of received packets after a ProtocolError
has been handled.


	Returns

	A (possibly empty) list of decoded messages from the buffered packets.



	Raises

	ProtocolError – When any of the buffered packets contains an invalid byte sequence.



	Return type

	List[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]


















High Level Usage


SlipWrapper


	
class SlipWrapper(stream)

	Base class that provides a message based interface to a byte stream

SlipWrapper combines a Driver instance with a byte stream.
The SlipWrapper class is an abstract base class.
It offers the methods send_msg() and recv_msg() to send and
receive single messages over the byte stream, but it does not of itself
provide the means to interact with the stream.

To interact with a concrete stream, a derived class must implement
the methods send_bytes() and recv_bytes()
to write to and read from the stream.

A SlipWrapper instance can be iterated over.
Each iteration will provide the next message that is received from the byte stream.


Changed in version 0.5: Allow iteration over a SlipWrapper instance.



To instantiate a SlipWrapper, the user must provide
an existing byte stream


	Parameters

	stream (bytestream) – The byte stream that will be wrapped.





Class SlipWrapper offers the following methods and attributes:


	
send_msg(message)

	Send a SLIP-encoded message over the stream.


	Parameters

	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to encode and send



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
recv_msg()

	Receive a single message from the stream.


	Returns

	A SLIP-decoded message



	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]



	Raises

	ProtocolError – when a SLIP protocol error has been encountered.
    A subsequent call to recv_msg() (after handling the exception)
    will return the message from the next packet.










	
driver

	The SlipWrapper’s Driver instance.






	
stream

	The wrapped stream.





In addition, SlipWrapper requires that derived classes implement the following methods:


	
send_bytes(packet)

	Send a packet over the stream.

Derived classes must implement this method.


	Parameters

	packet (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the packet to send over the stream



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
recv_bytes()

	Receive data from the stream.

Derived classes must implement this method.


Note

The convention used within the SlipWrapper class
is that recv_bytes() returns an empty bytes object
to indicate that the end of
the byte stream has been reached and no further data will
be received. Derived implementations must ensure that
this convention is followed.




	Returns

	The bytes received from the stream



	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
















SlipStream


	
class SlipStream(stream[, chunk_size])

	Bases: sliplib.slipwrapper.SlipWrapper

Class that wraps an IO stream with a Driver

SlipStream combines a Driver instance with a concrete byte stream.
The byte stream must support the methods read() and write().
To avoid conflicts and ambiguities caused by different newline conventions,
streams that have an encoding attribute
(such as io.StringIO [https://docs.python.org/3/library/io.html#io.StringIO] objects, or text files that are not opened in binary mode)
are not accepted as a byte stream.

The SlipStream class has all the methods and attributes
from its base class SlipWrapper.
In addition it directly exposes all methods and attributes of
the contained stream, except for the following:



	read*() and write*(). These methods are not
supported, because byte-oriented read and write operations
would invalidate the internal state maintained by SlipStream.


	Similarly, seek(), tell(), and truncate() are not supported,
because repositioning or truncating the stream would invalidate the internal state.


	raw(), detach() and other methods that provide access to or manipulate
the stream’s internal data.







In stead of the read*() and write*() methods
a SlipStream object provides the method recv_msg() and send_msg()
to read and write SLIP-encoded messages.


Deprecated since version 0.6: Direct access to the methods and attributes of the contained stream
will be removed in version 1.0



To instantiate a SlipStream object, the user must provide
a pre-constructed open byte stream that is ready for reading and/or writing


	Parameters

	
	stream (bytestream) – The byte stream that will be wrapped.


	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – the number of bytes to read per read operation.
The default value for chunck_size is io.DEFAULT_BUFFER_SIZE.
Setting the chunk_size is useful when the stream has a low bandwidth
and/or bursty data (e.g. a serial port interface).
In such cases it is useful to have a chunk_size of 1, to avoid that the application
hangs or becomes unresponsive.









New in version 0.6: The chunk_size parameter.



A SlipStream instance can e.g. be useful to read slip-encoded messages
from a file:

with open('/path/to/a/slip/encoded/file', mode='rb') as f:
    slip_file = SlipStream(f)
    for msg in slip_file:
        # Do something with the message





A SlipStream instance has the following attributes in addition to the attributes
offered by its base class SlipWrapper:


	
readable

	Indicates if the wrapped stream is readable.
The value is True if the readability of the wrapped stream
cannot be determined.






	
writable

	Indicates if the wrapped stream is writable.
The value is True if the writabilty of the wrapped stream
cannot be determined.












SlipSocket


	
class SlipSocket(sock)

	Bases: sliplib.slipwrapper.SlipWrapper

Class that wraps a TCP socket with a Driver

SlipSocket combines a Driver instance with a
socket.
The SlipStream class has all the methods from its base class SlipWrapper.
In addition it directly exposes all methods and attributes of
the contained socket, except for the following:


	send*() and recv*(). These methods are not
supported, because byte-oriented send and receive operations
would invalidate the internal state maintained by SlipSocket.


	Similarly, makefile() is not supported, because byte- or line-oriented
read and write operations would invalidate the internal state.


	share() (Windows only) and dup(). The internal state of
the SlipSocket would have to be duplicated and shared to make these methods meaningful.
Because of the lack of a convincing use case for this, sharing and duplication is
not supported.


	The accept() method is delegated to the contained socket,
but the socket that is returned by the socket’s accept() method
is automatically wrapped in a SlipSocket object.




In stead of the socket’s send*() and recv*() methods
a SlipSocket provides the method send_msg() and recv_msg()
to send and receive SLIP-encoded messages.


Deprecated since version 0.6: Direct access to the methods and attributes of the contained socket
other than family, type, and proto will be removed in version 1.0



Only TCP sockets are supported. Using the SLIP protocol on
UDP sockets is not supported for the following reasons:


	UDP is datagram-based. Using SLIP with UDP therefore
introduces ambiguity: should SLIP packets be allowed to span
multiple UDP datagrams or not?


	UDP does not guarantee delivery, and does not guarantee that
datagrams are delivered in the correct order.




To instantiate a SlipSocket, the user must provide
a pre-constructed TCP socket.
An alternative way to instantiate s SlipSocket is to use the
class method create_connection().


	Parameters

	sock (socket.socket) – An existing TCP socket, i.e.
a socket with type socket.SOCK_STREAM





Class SlipSocket offers the following methods in addition to the methods
offered by its base class SlipWrapper:


	
accept()

	Accepts an incoming connection.


	Returns

	A (SlipSocket, remote_address) pair.
The SlipSocket object
can be used to exchange SLIP-encoded data with the socket at the remote_address.



	Return type

	Tuple[SlipSocket, Tuple]






See also

socket.socket.accept() [https://docs.python.org/3/library/socket.html#socket.socket.accept]








	
classmethod create_connection(address, timeout=None, source_address=None)

	Create a SlipSocket connection.

This convenience method creates a connection to a socket at the specified address
using the socket.create_connection() [https://docs.python.org/3/library/socket.html#socket.create_connection] function.
The socket that is returned from that call is automatically wrapped in
a SlipSocket object.


	Parameters

	
	address (Address) – The remote address.


	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Optional timeout value.


	source_address (Address) – Optional local address for the near socket.






	Returns

	A SlipSocket that is connected to the socket at the remote address.



	Return type

	SlipSocket






See also

socket.create_connection() [https://docs.python.org/3/library/socket.html#socket.create_connection]








Note

The accept() and create_connection() methods
do not magically turn the
socket at the remote address into a SlipSocket.
For the connection to work properly,
the remote socket must already
have been configured to use the SLIP protocol.



The following commonly used socket.socket methods are exposed through
a SlipSocket object.
These methods are simply delegated to the wrapped socket instance.


	
bind(address)

	Bind the SlipSocket to address.


	Parameters

	address (Tuple) – The IP address to bind to.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]






See also

socket.socket.bind() [https://docs.python.org/3/library/socket.html#socket.socket.bind]








	
close()

	Close the SlipSocket.


See also

socket.socket.close() [https://docs.python.org/3/library/socket.html#socket.socket.close]




	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
connect(address)

	Connect SlipSocket to a remote socket at address.


	Parameters

	address (Tuple) – The IP address of the remote socket.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]






See also

socket.socket.connect() [https://docs.python.org/3/library/socket.html#socket.socket.connect]








	
connect_ex(address)

	Connect SlipSocket to a remote socket at address.


	Parameters

	address (Tuple) – The IP address of the remote socket.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]






See also

socket.socket.connect_ex() [https://docs.python.org/3/library/socket.html#socket.socket.connect_ex]








	
getpeername()

	Get the IP address of the remote socket to which SlipSocket is connected.


	Returns

	The remote IP address.



	Return type

	Tuple






See also

socket.socket.getpeername() [https://docs.python.org/3/library/socket.html#socket.socket.getpeername]








	
getsockname()

	Get SlipSocket’s own address.


	Returns

	The local IP address.



	Return type

	Tuple






See also

socket.socket.getsockname() [https://docs.python.org/3/library/socket.html#socket.socket.getsockname]








	
listen([backlog])

	Enable a SlipSocket server to accept connections.


	Parameters

	backlog (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of waiting connections.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]






See also

socket.socket.listen() [https://docs.python.org/3/library/socket.html#socket.socket.listen]








	
shutdown(how)

	Shutdown the connection.


	Parameters

	how (int [https://docs.python.org/3/library/functions.html#int]) – Flag to indicate which halves of the connection must be shut down.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]






See also

socket.socket.shutdown() [https://docs.python.org/3/library/socket.html#socket.socket.shutdown]







Since the wrapped socket is available as the socket attribute,
any other socket.socket
method can be invoked through that attribute.


Warning

Avoid using socket.socket
methods that affect the bytes that are sent or received through the socket.
Doing so will invalidate the internal state of the enclosed Driver instance,
resulting in corrupted SLIP messages.
In particular, do not use any of the recv*() or send*() methods
on the socket attribute.



A SlipSocket instance has the following attributes in addition to the attributes
offered by its base class SlipWrapper:


	
socket

	The wrapped socket.
This is actually just an alias for the stream attribute in the base class.






	
family

	The wrapped socket’s address family. Usually socket.AF_INET (IPv4) or socket.AF_INET6 (IPv6).






	
type

	The wrapped socket’s type. Always socket.SOCK_STREAM.






	
proto

	The wrapped socket’s protocol number. Usually 0.












SlipRequestHandler


	
class SlipRequestHandler(request, client_address, server)

	Bases: socketserver.BaseRequestHandler [https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler]

Base class for request handlers for SLIP-based communication

This class is derived from socketserver.BaseRequestHandler [https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler]
for the purpose of creating TCP server instances
that can handle incoming SLIP-based connections.

To implement a specific behaviour, all that
is needed is to derive a class that
defines a handle() method that uses
self.request to send and receive SLIP-encoded messages.

The interface is identical to that offered by the
socketserver.BaseRequestHandler [https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler] baseclass.
To do anything useful, a derived class must define
a new handle() method, and may override any
of the other methods.


	
setup()

	Initializes the request handler.

The original socket (available via self.request)
is wrapped in a SlipSocket object.
Derived classes may override this method,
but should call super().setup() before
accessing any SlipSocket
methods or attributes on self.request.


	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
handle()

	Services the request. Must be defined by a derived class.

Note that in general it does not make sense
to use a SlipRequestHandler object
to handle a single transmission, as is e.g. common with HTTP.
The purpose of the SLIP protocol is to allow separation of
messages in a continuous byte stream.
As such, it is expected that the handle() method of a derived class
is capable of handling multiple SLIP messages:

def handle(self):
    while True:
        msg = self.request.recv_msg()
        if msg == b'':
            break
        # Do something with the message






	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
finish()

	Performs any cleanup actions.

The default implementation does nothing.


	Return type

	None [https://docs.python.org/3/library/constants.html#None]


















Exceptions


	
exception ProtocolError

	Exception to indicate that a SLIP protocol error has occurred.

This exception is raised when an attempt is made to decode
a packet with an invalid byte sequence.
An invalid byte sequence is either an ESC byte followed
by any byte that is not an ESC_ESC or ESC_END byte,
or a trailing ESC byte as last byte of the packet.

The ProtocolError carries the invalid packet
as the first (and only) element in in its args tuple.











          

      

      

    

  

    
      
          
            
  
Examples

The directory examples in
SlipLib’s GitHub repository [https://github.com/rhjdjong/SlipLib/]
contains some basic examples on how the sliplib module can be used.


Echoserver

This directory contains an example server and client application
that demonstrate a basic use-case for Slip-encoded messages.
The example works both for IPv4 and IPv6 sockets.


Server

The server.py example file is a demonstrator echo server.
It uses a subclass of SlipRequestHandler
that transforms the request attribute into
a dedicated socket subclass that prints
the raw data that is received and sent.
The request handler prints the decoded message,
and then reverses the order of the bytes in the encoded message
(so abc becomes cab),
and sends it back to the client.




Client

The client.py example file is a client for the demonstrator echo server .
It prompts the user for a message,
encodes it in a Slip packet, sends it to the server,
and prints the decoded reply it gets back from the server.
This is repeated until the user enters an empty message.




Usage

Open a terminal window in the echoserver directory
and run the server_ipv6.py script. This will start the server
and print the address on which the server is listening.

$ python server.py
Slip server listening on localhost, port 59454





Then in another terminal window in the same directory run the client.py script
with the port number reported by the server.

$ python client.py 59454
Connecting to server on port 59454
Connected to ('127.0.0.1', 59454)
Message>





You can now enter a message, and the client will print the response from the server
before prompting for the next message.
An empty message stops both the client and the server.

$ python client.py 59454
Connecting to server on port 59454
Connected to ('127.0.0.1', 59454)
Message> hallo
Response: b'ollah'
Message> bye
Response: b'eyb'
Message>
$





The server will have printed the following information:

$ python server_ipv6.py
Slip server listening on localhost, port 59454
Incoming connection from ('127.0.0.1', 59458)
Raw data received: b'\xc0hallo\xc0'
Decoded data: b'hallo'
Sending raw data: b'\xc0ollah\xc0'
Raw data received: b'\xc0bye\xc0'
Decoded data: b'bye'
Sending raw data: b'\xc0eyb\xc0'
Raw data received: b''
Decoded data: b''
Closing down
$








Running on IPv6

By running the server with the argument ipv6,
an IPv6-based connection will be established.

In the server terminal window:

$ python server.py ipv6
Slip server listening on localhost, port 59454
Incoming connection from ('::1', 59458, 0, 0)
...





In the client terminal window:

$ python client.py 59454
Connecting to server on port 59454
Connected to ('::1', 59454, 0, 0)
Message>
...













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   e | 
   s
   


   
     		 	

     		
       e	

     
       	[image: -]
       	
       echoserver	
       

     
       	
       	   
       echoserver.client	
       

     
       	
       	   
       echoserver.server	
       

     		 	

     		
       s	

     
       	[image: -]
       	
       sliplib	
       

     
       	
       	   
       sliplib.slip	
       

     
       	
       	   
       sliplib.sliprequesthandler	
       

     
       	
       	   
       sliplib.slipsocket	
       

     
       	
       	   
       sliplib.slipstream	
       

     
       	
       	   
       sliplib.slipwrapper	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W
 


A


  	
      	accept() (SlipSocket method)


  





B


  	
      	bind() (SlipSocket method)


  





C


  	
      	close() (SlipSocket method)


      	connect() (SlipSocket method)


  

  	
      	connect_ex() (SlipSocket method)


      	create_connection() (SlipSocket class method)


  





D


  	
      	decode() (in module sliplib.slip)


  

  	
      	Driver (class in sliplib.slip)


      	driver (SlipWrapper attribute)


  





E


  	
      	
    echoserver

      
        	module


      


      	
    echoserver.client

      
        	module


      


      	
    echoserver.server

      
        	module


      


  

  	
      	encode() (in module sliplib.slip)


      	END (in module sliplib.slip)


      	ESC (in module sliplib.slip)


      	ESC_END (in module sliplib.slip)


      	ESC_ESC (in module sliplib.slip)


  





F


  	
      	family (SlipSocket attribute)


  

  	
      	finish() (SlipRequestHandler method)


      	flush() (Driver method)


  





G


  	
      	getpeername() (SlipSocket method)


  

  	
      	getsockname() (SlipSocket method)


  





H


  	
      	handle() (SlipRequestHandler method)


  





I


  	
      	is_valid() (in module sliplib.slip)


  





L


  	
      	listen() (SlipSocket method)


  





M


  	
      	messages (Driver attribute)


      	
    module

      
        	echoserver


        	echoserver.client


        	echoserver.server


        	sliplib


        	sliplib.slip


        	sliplib.sliprequesthandler


        	sliplib.slipsocket


        	sliplib.slipstream


        	sliplib.slipwrapper


      


  





P


  	
      	proto (SlipSocket attribute)


  

  	
      	ProtocolError


  





R


  	
      	readable (SlipStream attribute)


      	receive() (Driver method)


      	recv_bytes() (SlipWrapper method)


  

  	
      	recv_msg() (SlipWrapper method)


      	
    RFC

      
        	RFC 1055, [1], [2], [3], [4]


      


  





S


  	
      	send() (Driver method)


      	send_bytes() (SlipWrapper method)


      	send_msg() (SlipWrapper method)


      	setup() (SlipRequestHandler method)


      	shutdown() (SlipSocket method)


      	
    sliplib

      
        	module


      


      	
    sliplib.slip

      
        	module


      


      	
    sliplib.sliprequesthandler

      
        	module


      


  

  	
      	
    sliplib.slipsocket

      
        	module


      


      	
    sliplib.slipstream

      
        	module


      


      	
    sliplib.slipwrapper

      
        	module


      


      	SlipRequestHandler (class in sliplib.sliprequesthandler)


      	SlipSocket (class in sliplib.slipsocket)


      	SlipStream (class in sliplib.slipstream)


      	SlipWrapper (class in sliplib.slipwrapper)


      	socket (SlipSocket attribute)


      	stream (SlipWrapper attribute)


  





T


  	
      	type (SlipSocket attribute)


  





W


  	
      	writable (SlipStream attribute)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          sliplib — A module for the SLIP protocol
        


        		
          Module Contents
          
            		
              Introduction
            


            		
              Low level Usage
              
                		
                  Constants
                


                		
                  Functions
                


                		
                  Classes
                


              


            


            		
              High Level Usage
              
                		
                  SlipWrapper
                


                		
                  SlipStream
                


                		
                  SlipSocket
                


                		
                  SlipRequestHandler
                


              


            


            		
              Exceptions
            


          


        


        		
          Examples
          
            		
              Echoserver
              
                		
                  Server
                


                		
                  Client
                


                		
                  Usage
                


                		
                  Running on IPv6
                


              


            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





