
sliplib
Release 0.6.1

Ruud de Jong

May 22, 2020

CONTENTS

1 Background 3

2 Usage 5
2.1 Low-level usage . 5
2.2 High-level usage . 5

3 Error Handling 7

4 Changelog 9
4.1 v0.6.0 . 9
4.2 v0.5.0 . 9
4.3 v0.4.0 . 9
4.4 v0.3.0 . 9

5 Indices and tables 21

Python Module Index 23

Index 25

i

ii

sliplib, Release 0.6.1

The sliplib module implements the encoding and decoding functionality for SLIP packets, as described in RFC 1055.
It defines encoding, decoding, and validation functions, as well as a driver class that can be used to implement a SLIP
protocol stack, and higher-level classes that apply the SLIP protocol to TCP connections or IO streams. Read the
documentation for detailed information.

CONTENTS 1

http://sliplib.readthedocs.org/en/latest/?badge=latest
https://travis-ci.org/rhjdjong/SlipLib
https://ci.appveyor.com/project/RuuddeJong/sliplib/branch/master
https://tools.ietf.org/html/rfc1055.html
http://sliplib.readthedocs.org/en/latest/

sliplib, Release 0.6.1

2 CONTENTS

CHAPTER

ONE

BACKGROUND

The SLIP protocol is described in RFC 1055 (A Nonstandard for Transmission of IP Datagrams over Serial Lines:
SLIP, J. Romkey, June 1988). The original purpose of the protocol is to provide a mechanism to indicate the boundaries
of IP packets, in particular when the IP packets are sent over a connection that does not provide a framing mechanism,
such as serial lines or dial-up connections.

There is, however, nothing specific to IP in the SLIP protocol. SLIP offers a generic framing method that can be used
for any type of data that must be transmitted over a (continuous) byte stream. In fact, the main reason for creating this
module was the need to communicate with a third-party application that used SLIP over TCP (which is a continuous
byte stream) to frame variable length data structures.

3

https://tools.ietf.org/html/rfc1055.html

sliplib, Release 0.6.1

4 Chapter 1. Background

CHAPTER

TWO

USAGE

2.1 Low-level usage

The recommended basic usage is to run all encoding and decoding operations through an instantiation driver of the
Driver class, in combination with the appropriate I/O code. The Driver class itself works without any I/O, and can
therefore be used with any networking code, or any bytestream like pipes, serial I/O, etc. It can work in synchronous
as well as in asynchronous environments.

The Driver class offers the methods send and receive to handle the conversion between messages and SLIP-encoded
packets.

2.2 High-level usage

The module also provides a SlipWrapper abstract baseclass that provides the methods send_msg and recv_msg to send
and receive single SLIP-encoded messages. This base class wraps an instance of the Driver class with a user-provided
stream.

Two concrete subclasses of SlipWrapper are provided:

• SlipStream allows the wrapping of a byte IO stream.

• SlipSocket allows the wrapping of a TCP socket.

In addition, the module also provides a SlipRequestHandler to facilitate the creation of TCP servers that can handle
SLIP-encoded messages.

5

sliplib, Release 0.6.1

6 Chapter 2. Usage

CHAPTER

THREE

ERROR HANDLING

Contrary to the reference implementation described in RFC 1055, which chooses to essentially ignore protocol errors,
the functions and classes in the sliplib module uses a ProtocolError exception to indicate protocol errors, i.e. SLIP
packets with invalid byte sequences. The Driver class raises the ProtocolError exception as soon as a SLIP packet
with an invalid byte sequence is received . The SlipWrapper class and its subclasses catch the ProtocolErrors raised
by the Driver class, and re-raise them when an attempt is made to read the contents of a SLIP packet with invalid data.

7

https://tools.ietf.org/html/rfc1055.html

sliplib, Release 0.6.1

8 Chapter 3. Error Handling

CHAPTER

FOUR

CHANGELOG

4.1 v0.6.0

• Added support for unbuffered byte streams in SlipStream (issue #16).

• Deprecated direct access to wrapped bytestream (SlipStream) and socket (SlipSocket)

• Updated documentation and examples

4.2 v0.5.0

• Made SlipWrapper and its derived classes iterable (issue #18).

4.3 v0.4.0

• Removed sphinx as install dependency (issue #9). Sphinx is only required for documentation development.

• Changes in automated testing:

– Added testing against Python 3.8.

– Added macOS testing.

– Removed testing against Python 3.4.

4.4 v0.3.0

• First general available beta release.

9

sliplib, Release 0.6.1

4.4.1 Module Contents

Introduction

The sliplib module implements the encoding and decoding functionality for SLIP packets, as described in RFC
1055. It defines encoding, decoding, and validation functions, as well as various classes that can be used to to wrap
the SLIP protocol over different kinds of byte streams.

The SLIP protocol is described in RFC 1055 (A Nonstandard for Transmission of IP Datagrams over Serial Lines:
SLIP, J. Romkey, June 1988). The original purpose of the protocol is to provide a mechanism to indicate the boundaries
of IP packets, in particular when the IP packets are sent over a connection that does not provide a framing mechanism,
such as serial lines or dial-up connections.

There is, however, nothing specific to IP in the SLIP protocol. The protocol describes a generic framing method that
can be used for any type of data that must be transmitted over a (continuous) byte stream. In fact, the main reason for
creating this module was the need to communicate with a third-party application that used SLIP over TCP (which is a
continuous byte stream) to frame variable length data structures.

The SLIP protocol uses four special byte values:

Byte value Name Purpose
0xc0 END to delimit messages
0xdb ESC to escape END or ESC bytes in the message
0xdc ESC_END the escaped value of the END byte
0xdd ESC_ESC the escaped value of the ESC byte

An END byte in the message is encoded as the sequence ESC+ESC_END (b'\xdb\xdc') in the slip packet, and an
ESC byte in the message is encoded as the sequence ESC+ESC_ESC (b'\xdb\xdd').

Decoded Encoded
b'\xc0' b'\xdb\xdc'
b'\xdb' b'\xdb\xdd'

As a consequence, an ESC byte in an encoded SLIP packet must always be followed by an ESC_END or an ESC_ESC
byte; anything else is a protocol error.

Low level Usage

Constants

END

ESC

ESC_END

ESC_ESC
These constants represent the special bytes used by SLIP for delimiting and encoding messages.

10 Chapter 4. Changelog

https://tools.ietf.org/html/rfc1055.html
https://tools.ietf.org/html/rfc1055.html
https://tools.ietf.org/html/rfc1055.html

sliplib, Release 0.6.1

Functions

The following are lower-level functions, that should normally not be used directly.

encode(msg)
Encodes a message (a byte sequence) into a SLIP-encoded packet.

Parameters msg (bytes) – The message that must be encoded

Returns The SLIP-encoded message

Return type bytes

decode(packet)
Retrieves the message from the SLIP-encoded packet.

Parameters packet (bytes) – The SLIP-encoded message. Note that this must be exactly one
complete packet. The decode() function does not provide any buffering for incomplete pack-
ages, nor does it provide support for decoding data with multiple packets.

Returns The decoded message

Raises ProtocolError – if the packet contains an invalid byte sequence.

Return type bytes

is_valid(packet)
Indicates if the packet’s contents conform to the SLIP specification.

A packet is valid if:

• It contains no END bytes other than leading and/or trailing END bytes, and

• Each ESC byte is followed by either an ESC_END or an ESC_ESC byte.

Parameters packet (bytes) – The packet to inspect.

Returns True if the packet is valid, False otherwise

Return type bool

Classes

class Driver
Class to handle the SLIP-encoding and decoding of messages

This class manages the handling of encoding and decoding of messages according to the SLIP protocol.

Class Driver offers the following methods:

Return type None

send(message)
Encodes a message into a SLIP-encoded packet.

The message can be any arbitrary byte sequence.

Parameters message (bytes) – The message that must be encoded.

Returns A packet with the SLIP-encoded message.

Return type bytes

4.4. v0.3.0 11

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

sliplib, Release 0.6.1

receive(data)
Decodes data and gives a list of decoded messages.

Processes data, which must be a bytes-like object, and returns a (possibly empty) list with bytes ob-
jects, each containing a decoded message. Any non-terminated SLIP packets in data are buffered, and
processed with the next call to receive().

Parameters data (Union[bytes, int]) – A bytes-like object to be processed.

An empty data parameter forces the internal buffer to be flushed and decoded.

To accommodate iteration over byte sequences, an integer in the range(0, 256) is also ac-
cepted.

Returns A (possibly empty) list of decoded messages.

Raises ProtocolError – When data contains an invalid byte sequence.

Return type List[bytes]

To enable recovery from a ProtocolError, the Driver class offers the following attribute and method:

messages
A list of decoded messages.

The read-only attribute messages contains the messages that were already decoded before a
ProtocolError was raised. This enables the handler of the ProtocolError exception to recover
the messages up to the point where the error occurred. This attribute is cleared after it has been read.

flush()
Gives a list of decoded messages.

Decodes the packets in the internal buffer. This enables the continuation of the processing of received
packets after a ProtocolError has been handled.

Returns A (possibly empty) list of decoded messages from the buffered packets.

Raises ProtocolError – When any of the buffered packets contains an invalid byte se-
quence.

Return type List[bytes]

High Level Usage

SlipWrapper

class SlipWrapper(stream)
Base class that provides a message based interface to a byte stream

SlipWrapper combines a Driver instance with a byte stream. The SlipWrapper class is an abstract
base class. It offers the methods send_msg() and recv_msg() to send and receive single messages over
the byte stream, but it does not of itself provide the means to interact with the stream.

To interact with a concrete stream, a derived class must implement the methods send_bytes() and
recv_bytes() to write to and read from the stream.

A SlipWrapper instance can be iterated over. Each iteration will provide the next message that is received
from the byte stream.

Changed in version 0.5: Allow iteration over a SlipWrapper instance.

To instantiate a SlipWrapper, the user must provide an existing byte stream

12 Chapter 4. Changelog

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

sliplib, Release 0.6.1

Parameters stream (bytestream) – The byte stream that will be wrapped.

Class SlipWrapper offers the following methods and attributes:

send_msg(message)
Send a SLIP-encoded message over the stream.

Parameters message (bytes) – The message to encode and send

Return type None

recv_msg()
Receive a single message from the stream.

Returns A SLIP-decoded message

Return type bytes

Raises ProtocolError – when a SLIP protocol error has been encountered. A subsequent
call to recv_msg() (after handling the exception) will return the message from the next
packet.

driver
The SlipWrapper’s Driver instance.

stream
The wrapped stream.

In addition, SlipWrapper requires that derived classes implement the following methods:

send_bytes(packet)
Send a packet over the stream.

Derived classes must implement this method.

Parameters packet (bytes) – the packet to send over the stream

Return type None

recv_bytes()
Receive data from the stream.

Derived classes must implement this method.

Note: The convention used within the SlipWrapper class is that recv_bytes() returns an empty
bytes object to indicate that the end of the byte stream has been reached and no further data will be received.
Derived implementations must ensure that this convention is followed.

Returns The bytes received from the stream

Return type bytes

4.4. v0.3.0 13

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes

sliplib, Release 0.6.1

SlipStream

class SlipStream(stream[, chunk_size])
Bases: sliplib.slipwrapper.SlipWrapper

Class that wraps an IO stream with a Driver

SlipStream combines a Driver instance with a concrete byte stream. The byte stream must support the
methods read() and write(). To avoid conflicts and ambiguities caused by different newline conventions,
streams that have an encoding attribute (such as io.StringIO objects, or text files that are not opened in
binary mode) are not accepted as a byte stream.

The SlipStream class has all the methods and attributes from its base class SlipWrapper. In addition it
directly exposes all methods and attributes of the contained stream, except for the following:

• read*() and write*(). These methods are not supported, because byte-oriented read and write oper-
ations would invalidate the internal state maintained by SlipStream.

• Similarly, seek(), tell(), and truncate() are not supported, because repositioning or truncating
the stream would invalidate the internal state.

• raw(), detach() and other methods that provide access to or manipulate the stream’s internal data.

In stead of the read*() and write*() methods a SlipStream object provides the method recv_msg()
and send_msg() to read and write SLIP-encoded messages.

Deprecated since version 0.6: Direct access to the methods and attributes of the contained stream will be
removed in version 1.0

To instantiate a SlipStream object, the user must provide a pre-constructed open byte stream that is ready
for reading and/or writing

Parameters

• stream (bytestream) – The byte stream that will be wrapped.

• chunk_size (int) – the number of bytes to read per read operation. The default value
for chunck_size is io.DEFAULT_BUFFER_SIZE. Setting the chunk_size is useful when the
stream has a low bandwidth and/or bursty data (e.g. a serial port interface). In such cases
it is useful to have a chunk_size of 1, to avoid that the application hangs or becomes unre-
sponsive.

New in version 0.6: The chunk_size parameter.

A SlipStream instance can e.g. be useful to read slip-encoded messages from a file:

with open('/path/to/a/slip/encoded/file', mode='rb') as f:
slip_file = SlipStream(f)
for msg in slip_file:

Do something with the message

A SlipStream instance has the following attributes in addition to the attributes offered by its base class
SlipWrapper:

readable
Indicates if the wrapped stream is readable. The value is True if the readability of the wrapped stream
cannot be determined.

writable
Indicates if the wrapped stream is writable. The value is True if the writabilty of the wrapped stream cannot
be determined.

14 Chapter 4. Changelog

https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/functions.html#int

sliplib, Release 0.6.1

SlipSocket

class SlipSocket(sock)
Bases: sliplib.slipwrapper.SlipWrapper

Class that wraps a TCP socket with a Driver

SlipSocket combines a Driver instance with a socket. The SlipStream class has all the methods
from its base class SlipWrapper. In addition it directly exposes all methods and attributes of the contained
socket, except for the following:

• send*() and recv*(). These methods are not supported, because byte-oriented send and receive
operations would invalidate the internal state maintained by SlipSocket.

• Similarly, makefile() is not supported, because byte- or line-oriented read and write operations would
invalidate the internal state.

• share() (Windows only) and dup(). The internal state of the SlipSocket would have to be dupli-
cated and shared to make these methods meaningful. Because of the lack of a convincing use case for this,
sharing and duplication is not supported.

• The accept() method is delegated to the contained socket, but the socket that is returned by the
socket’s accept() method is automatically wrapped in a SlipSocket object.

In stead of the socket’s send*() and recv*() methods a SlipSocket provides the method
send_msg() and recv_msg() to send and receive SLIP-encoded messages.

Deprecated since version 0.6: Direct access to the methods and attributes of the contained socket other than
family, type, and proto will be removed in version 1.0

Only TCP sockets are supported. Using the SLIP protocol on UDP sockets is not supported for the following
reasons:

• UDP is datagram-based. Using SLIP with UDP therefore introduces ambiguity: should SLIP packets be
allowed to span multiple UDP datagrams or not?

• UDP does not guarantee delivery, and does not guarantee that datagrams are delivered in the correct order.

To instantiate a SlipSocket, the user must provide a pre-constructed TCP socket. An alternative way to
instantiate s SlipSocket is to use the class method create_connection().

Parameters sock (socket.socket) – An existing TCP socket, i.e. a socket with type
socket.SOCK_STREAM

Class SlipSocket offers the following methods in addition to the methods offered by its base class
SlipWrapper:

accept()
Accepts an incoming connection.

Returns A (SlipSocket, remote_address) pair. The SlipSocket object can be used to ex-
change SLIP-encoded data with the socket at the remote_address.

Return type Tuple[SlipSocket, Tuple]

See also:

socket.socket.accept()

classmethod create_connection(address, timeout=None, source_address=None)
Create a SlipSocket connection.

4.4. v0.3.0 15

https://docs.python.org/3/library/socket.html#socket.socket.accept

sliplib, Release 0.6.1

This convenience method creates a connection to a socket at the specified address using the socket.
create_connection() function. The socket that is returned from that call is automatically wrapped
in a SlipSocket object.

Parameters

• address (Address) – The remote address.

• timeout (float) – Optional timeout value.

• source_address (Address) – Optional local address for the near socket.

Returns A SlipSocket that is connected to the socket at the remote address.

Return type SlipSocket

See also:

socket.create_connection()

Note: The accept() and create_connection() methods do not magically turn the socket at the
remote address into a SlipSocket. For the connection to work properly, the remote socket must already have
been configured to use the SLIP protocol.

The following commonly used socket.socket methods are exposed through a SlipSocket object. These
methods are simply delegated to the wrapped socket instance.

bind(address)
Bind the SlipSocket to address.

Parameters address (Tuple) – The IP address to bind to.

Return type None

See also:

socket.socket.bind()

close()
Close the SlipSocket.

See also:

socket.socket.close()

Return type None

connect(address)
Connect SlipSocket to a remote socket at address.

Parameters address (Tuple) – The IP address of the remote socket.

Return type None

See also:

socket.socket.connect()

connect_ex(address)
Connect SlipSocket to a remote socket at address.

Parameters address (Tuple) – The IP address of the remote socket.

Return type None

16 Chapter 4. Changelog

https://docs.python.org/3/library/socket.html#socket.create_connection
https://docs.python.org/3/library/socket.html#socket.create_connection
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/socket.html#socket.create_connection
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.bind
https://docs.python.org/3/library/socket.html#socket.socket.close
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.connect
https://docs.python.org/3/library/constants.html#None

sliplib, Release 0.6.1

See also:

socket.socket.connect_ex()

getpeername()
Get the IP address of the remote socket to which SlipSocket is connected.

Returns The remote IP address.

Return type Tuple

See also:

socket.socket.getpeername()

getsockname()
Get SlipSocket’s own address.

Returns The local IP address.

Return type Tuple

See also:

socket.socket.getsockname()

listen([backlog])
Enable a SlipSocket server to accept connections.

Parameters backlog (int) – The maximum number of waiting connections.

Return type None

See also:

socket.socket.listen()

shutdown(how)
Shutdown the connection.

Parameters how (int) – Flag to indicate which halves of the connection must be shut down.

Return type None

See also:

socket.socket.shutdown()

Since the wrapped socket is available as the socket attribute, any other socket.socket method can be
invoked through that attribute.

Warning: Avoid using socket.socketmethods that affect the bytes that are sent or received through the
socket. Doing so will invalidate the internal state of the enclosed Driver instance, resulting in corrupted
SLIP messages. In particular, do not use any of the recv*() or send*() methods on the socket
attribute.

A SlipSocket instance has the following attributes in addition to the attributes offered by its base class
SlipWrapper:

socket
The wrapped socket. This is actually just an alias for the stream attribute in the base class.

family
The wrapped socket’s address family. Usually socket.AF_INET (IPv4) or socket.AF_INET6
(IPv6).

4.4. v0.3.0 17

https://docs.python.org/3/library/socket.html#socket.socket.connect_ex
https://docs.python.org/3/library/socket.html#socket.socket.getpeername
https://docs.python.org/3/library/socket.html#socket.socket.getsockname
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.listen
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.shutdown

sliplib, Release 0.6.1

type
The wrapped socket’s type. Always socket.SOCK_STREAM.

proto
The wrapped socket’s protocol number. Usually 0.

SlipRequestHandler

class SlipRequestHandler(request, client_address, server)
Bases: socketserver.BaseRequestHandler

Base class for request handlers for SLIP-based communication

This class is derived from socketserver.BaseRequestHandler for the purpose of creating TCP server
instances that can handle incoming SLIP-based connections.

To implement a specific behaviour, all that is needed is to derive a class that defines a handle() method that
uses self.request to send and receive SLIP-encoded messages.

The interface is identical to that offered by the socketserver.BaseRequestHandler baseclass. To
do anything useful, a derived class must define a new handle() method, and may override any of the other
methods.

setup()
Initializes the request handler.

The original socket (available via self.request) is wrapped in a SlipSocket object. De-
rived classes may override this method, but should call super().setup() before accessing any
SlipSocket methods or attributes on self.request.

Return type None

handle()
Services the request. Must be defined by a derived class.

Note that in general it does not make sense to use a SlipRequestHandler object to handle a single
transmission, as is e.g. common with HTTP. The purpose of the SLIP protocol is to allow separation of
messages in a continuous byte stream. As such, it is expected that the handle() method of a derived
class is capable of handling multiple SLIP messages:

def handle(self):
while True:

msg = self.request.recv_msg()
if msg == b'':

break
Do something with the message

Return type None

finish()
Performs any cleanup actions.

The default implementation does nothing.

Return type None

18 Chapter 4. Changelog

https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler
https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler
https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

sliplib, Release 0.6.1

Exceptions

exception ProtocolError
Exception to indicate that a SLIP protocol error has occurred.

This exception is raised when an attempt is made to decode a packet with an invalid byte sequence. An invalid
byte sequence is either an ESC byte followed by any byte that is not an ESC_ESC or ESC_END byte, or a
trailing ESC byte as last byte of the packet.

The ProtocolError carries the invalid packet as the first (and only) element in in its args tuple.

4.4.2 Examples

The directory examples in SlipLib’s GitHub repository contains some basic examples on how the sliplib module
can be used.

Echoserver

This directory contains an example server and client application that demonstrate a basic use-case for Slip-encoded
messages. The example works both for IPv4 and IPv6 sockets.

Server

The server.py example file is a demonstrator echo server. It uses a subclass of SlipRequestHandler that
transforms the request attribute into a dedicated socket subclass that prints the raw data that is received and sent.
The request handler prints the decoded message, and then reverses the order of the bytes in the encoded message (so
abc becomes cab), and sends it back to the client.

Client

The client.py example file is a client for the demonstrator echo server . It prompts the user for a message, encodes
it in a Slip packet, sends it to the server, and prints the decoded reply it gets back from the server. This is repeated
until the user enters an empty message.

Usage

Open a terminal window in the echoserver directory and run the server_ipv6.py script. This will start the
server and print the address on which the server is listening.

$ python server.py
Slip server listening on localhost, port 59454

Then in another terminal window in the same directory run the client.py script with the port number reported by
the server.

$ python client.py 59454
Connecting to server on port 59454
Connected to ('127.0.0.1', 59454)
Message>

4.4. v0.3.0 19

https://github.com/rhjdjong/SlipLib/

sliplib, Release 0.6.1

You can now enter a message, and the client will print the response from the server before prompting for the next
message. An empty message stops both the client and the server.

$ python client.py 59454
Connecting to server on port 59454
Connected to ('127.0.0.1', 59454)
Message> hallo
Response: b'ollah'
Message> bye
Response: b'eyb'
Message>
$

The server will have printed the following information:

$ python server_ipv6.py
Slip server listening on localhost, port 59454
Incoming connection from ('127.0.0.1', 59458)
Raw data received: b'\xc0hallo\xc0'
Decoded data: b'hallo'
Sending raw data: b'\xc0ollah\xc0'
Raw data received: b'\xc0bye\xc0'
Decoded data: b'bye'
Sending raw data: b'\xc0eyb\xc0'
Raw data received: b''
Decoded data: b''
Closing down
$

Running on IPv6

By running the server with the argument ipv6, an IPv6-based connection will be established.

In the server terminal window:

$ python server.py ipv6
Slip server listening on localhost, port 59454
Incoming connection from ('::1', 59458, 0, 0)
...

In the client terminal window:

$ python client.py 59454
Connecting to server on port 59454
Connected to ('::1', 59454, 0, 0)
Message>
...

20 Chapter 4. Changelog

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

21

sliplib, Release 0.6.1

22 Chapter 5. Indices and tables

PYTHON MODULE INDEX

e
echoserver, 19
echoserver.client, 19
echoserver.server, 19

s
sliplib, 10
sliplib.slip, 10
sliplib.sliprequesthandler, 18
sliplib.slipsocket, 14
sliplib.slipstream, 13
sliplib.slipwrapper, 12

23

sliplib, Release 0.6.1

24 Python Module Index

INDEX

A
accept() (SlipSocket method), 15

B
bind() (SlipSocket method), 16

C
close() (SlipSocket method), 16
connect() (SlipSocket method), 16
connect_ex() (SlipSocket method), 16
create_connection() (SlipSocket class method),

15

D
decode() (in module sliplib.slip), 11
Driver (class in sliplib.slip), 11
driver (SlipWrapper attribute), 13

E
echoserver

module, 19
echoserver.client

module, 19
echoserver.server

module, 19
encode() (in module sliplib.slip), 11
END (in module sliplib.slip), 10
ESC (in module sliplib.slip), 10
ESC_END (in module sliplib.slip), 10
ESC_ESC (in module sliplib.slip), 10

F
family (SlipSocket attribute), 17
finish() (SlipRequestHandler method), 18
flush() (Driver method), 12

G
getpeername() (SlipSocket method), 17
getsockname() (SlipSocket method), 17

H
handle() (SlipRequestHandler method), 18

I
is_valid() (in module sliplib.slip), 11

L
listen() (SlipSocket method), 17

M
messages (Driver attribute), 12
module

echoserver, 19
echoserver.client, 19
echoserver.server, 19
sliplib, 10
sliplib.slip, 10
sliplib.sliprequesthandler, 18
sliplib.slipsocket, 14
sliplib.slipstream, 13
sliplib.slipwrapper, 12

P
proto (SlipSocket attribute), 18
ProtocolError, 19

R
readable (SlipStream attribute), 14
receive() (Driver method), 11
recv_bytes() (SlipWrapper method), 13
recv_msg() (SlipWrapper method), 13
RFC

RFC 1055, 1, 3, 7, 10

S
send() (Driver method), 11
send_bytes() (SlipWrapper method), 13
send_msg() (SlipWrapper method), 13
setup() (SlipRequestHandler method), 18
shutdown() (SlipSocket method), 17
sliplib

module, 10
sliplib.slip

module, 10
sliplib.sliprequesthandler

25

sliplib, Release 0.6.1

module, 18
sliplib.slipsocket

module, 14
sliplib.slipstream

module, 13
sliplib.slipwrapper

module, 12
SlipRequestHandler (class in sli-

plib.sliprequesthandler), 18
SlipSocket (class in sliplib.slipsocket), 15
SlipStream (class in sliplib.slipstream), 14
SlipWrapper (class in sliplib.slipwrapper), 12
socket (SlipSocket attribute), 17
stream (SlipWrapper attribute), 13

T
type (SlipSocket attribute), 17

W
writable (SlipStream attribute), 14

26 Index

	Background
	Usage
	Low-level usage
	High-level usage

	Error Handling
	Changelog
	v0.6.0
	v0.5.0
	v0.4.0
	v0.3.0

	Indices and tables
	Python Module Index
	Index

